• About
    • About GoNano
    • Partners
    • GoNano Advisory Panel
    • Project material
  • Tools & Information
    • GoNano co-creation approach
    • The GoNano project in 90 seconds
    • Citizens: join the nanodebate
    • Materials for Researchers and Engineers
    • Supporting Civil Society Organisations
    • Recommendations for Policy Makers
    • The role of industry
    • Knowledge database
    • GoNano Youtube Channel
    • Deliverables
  • The GoNano Online Conference
  • Activities
    • GoNano Webinars
    • Public Consultation for the GoNano White Papers
    • GoNano winter school
    • Second Stakeholder workshop on energy
    • Second Stakeholder workshop on food
    • Second Stakeholder workshop on health
    • Online consultation
    • Stakeholder workshop on energy
    • Stakeholder workshop on food
    • Stakeholder workshop on health
    • Citizen workshop on health
    • Citizen workshop on energy
    • Citizen workshop on food
  • News & Events
  • Contact
  • enEnglish
    • nlNederlands
    • esEspañol
    • csČeština

Home » News & Events » New NanoZymes use light to kill bacteria  

New NanoZymes use light to kill bacteria  

James Giggacher, Senior Advisor, Communications, RMIT University
© Dr Chaitali Dekiwadia/ RMIT Microscopy and Microanalysis Facility
© Dr Chaitali Dekiwadia/ RMIT Microscopy and Microanalysis Facility

Researchers from RMIT University have developed a new artificial enzyme that uses light to kill bacteria.

The artificial enzymes could one day be used in the fight against infections, and to keep high-risk public spaces like hospitals free of bacteria like E coli and Golden Staph.E coli can cause dysentery and gastroenteritis, while Golden Staph is the major cause of hospital-acquired secondary infections and chronic wound infections. Made from tiny nanorods – 1000 times smaller than the thickness of the human hair – the “NanoZymes” use visible light to create highly reactive oxygen species that rapidly break down and kill bacteria. Lead researcher, Professor Vipul Bansal who is an Australian Future Fellow and Director of RMIT’s Sir Ian Potter NanoBioSensing Facility, said the new NanoZymes offer a major cutting edge over nature ability to kill bacteria.

“For a number of years we have been attempting to develop artificial enzymes that can fight bacteria, while also offering opportunities to control bacterial infections using external ‘triggers’ and ‘stimuli’, Bansal said. Now we have finally cracked it. Our NanoZymes are artificial enzymes that combine light with moisture to cause a biochemical reaction that produces OH radicals and breaks down bacteria. Nature’s antibacterial activity does not respond to external triggers such as light. We have shown that when shined upon with a flash of white light, the activity of our NanoZymes increases by over 20 times, forming holes in bacterial cells and killing them efficiently. This next generation of nanomaterials are likely to offer new opportunities in bacteria free surfaces and controlling spread of infections in public hospitals.”

“This NanoZyme technology has huge potential, and we are seeking interest from appropriate industries for joint product development.”

The NanoZymes work in a solution that mimics the fluid in a wound. This solution could be sprayed onto surfaces. The NanoZymes are also produced as powders to mix with paints, ceramics and other consumer products. This could mean bacteria-free walls and surfaces in hospitals. Public toilets – places with high levels of bacteria, and in particular E coli – are also a prime location for the NanoZymes, and the researchers believe their new technology may even have the potential to create self-cleaning toilet bowls. While the NanoZymes currently use visible light from torches or similar light sources, in the future they could be activated by sunlight. The researchers have shown that the NanoZymes work in a lab environment. The team is now evaluating the long-term performance of the NanoZymes in consumer products.

“The next step will be to validate the bacteria killing and wound healing ability of these NanoZymes outside of the lab,” Bansal said.

NanoZyme breakthrough has recently been published in the journal ACS Applied Nano Materials.

Energy

Search

  • The GoNano project in 90 seconds

    The GoNano project in 90 seconds

  • About the GoNano- Harvestore collaboration

    About the GoNano- Harvestore collaboration

  • Materials for Researchers and Engineers

    Materials for Researchers and Engineers

  • Supporting Civil Society Organisations

  • D4.4- Insights and lessons from the engagement activities*

    D4.4- Insights and lessons from the engagement activities*

Contact Details

The Danish Board of Technology Foundation
Arnold Nielsens Boulevard 68E
2650 Hvidovre, Denmark
info@gonano-project.eu

About GoNano
  • About GoNano
  • Partners
  • GoNano Advisory Panel
  • The GoNano Youtube Channel
Three topics
  • Energy
  • Food
  • Health

©2020, Design by Hannie van den Bergh, DPF | Development by The Danish Board of Technology Foundation

EU Logo

GoNano is a Coordination and Support Action funded by the European Union under the NMBP Programme of Horizon 2020, Grant Agreement n° 768622.